Eaton®
Heavy Duty Hydrostatic Pumps

Series 2

We Manufacture Solutions
Contents

Features ... 3

Pump Dimensions

- Model 54, 64, 75 - Opposite Side Porting 4 - 5
- Model 54, 64, 75 - Same Side Porting 6 - 7
- Model 89, 105 - Opposite Side Porting 8 - 9
- Model 89, 105 - Same Side Porting 10 - 11

Specifications and Performance Data ... 12

Charge Pump Performance Data ... 13

Model Code ... 14 - 15

Input Shaft Options .. 16

Pump Features and Options ... 17

Control Options

- Manual Control ... 18 - 19
- Hydraulic Remote Control ... 20
- Electronic Proportional Displacement Control 21 - 23
- Multiplex Control .. 24 - 25
- Solenoid Control w/Swashplate Feedback Sensor 26
- Forward - Neutral - Reverse Control and
 Controls Special Features ... 27

Auxiliary Mount Options .. 28

Operational Diagram ... 29

Application Information ... 30 - 31

Additional Application Information ... 32

Hydraulic Fluid Recommendations ... 33 - 34
Features

- 430 Bar Pressure Rating
- Speeds to 4510 RPM
- 3 Year Warranty
- Electronic Controls
- 1 Year Warranty on Electronics

Typical Applications:

- Road Roller/Compactor
- Harvesting Equipment
- Lift Truck
- Wheel Loader
- Agricultural Sprayer
- Auxiliary and Industrial Drives

The Eaton® Series 2 Heavy Duty Pump

The Advanced Series 2 Heavy Duty pump, with a cradle swashplate design, combines the time-tested reliability you expect from Eaton with compact packaging, exceptional control and quiet operation.

New pump mounted electronic controls range from the simple Electronic Proportional (EP) Displacement Control to the sophisticated Multiplex Control with CAN communications for displacement and pressure control.

The Series 2 Pump’s single piece pump housing provides exceptional strength and soundproofing. Eaton’s cast iron housing has only one major opening versus two openings for competitive pumps. This provides a stronger, more rigid pump housing and reduces the number of gasketed joints.

The high-strength, one-piece swashplate has the swashlever and servo-pin integrated into the swashplate, delivering increased reliability without adding extra weight.

A large diameter single servo piston permits pump operation at lower charge pressures, minimizing parasitic charge pump losses for increased overall pump efficiency. A large centering spring, housed within the servo piston, returns the pump to neutral in the event of control pressure loss.

The new integral gerotor type charge pump combines excellent suction/speed capabilities in a compact design. Several displacement options are available to suit the needs of every application, including tandem pumps.

The pump mounted electronics and sensors have been specially designed to meet the rigors of the mobile - off road environment, including resistance to electromagnetic interference or emissions.

A variety of available drive shaft configurations – straight keyed, splined, or tapered—ensures the proper shaft for your application.

The serviceable bi-metal bearing plate has steel for high pressure capability and a bronze bearing face for high speed capabilities.

SAE auxiliary mounts: “A,” “B,” “B-B” and “C” are available with and without charge pump. Excellent torque capability allows high horsepower to work circuits without multiple pump drives.

The main system ports – SAE code 61 and code 62 – are available with SAE or Metric threads. Opposite side and same side configurations are now available to accommodate a wide range of installations.
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Opposite Side Porting
Model Code 54, 64, 75

54 cm³/r [3.3 in³/r]
64 cm³/r [3.9 in³/r]
75 cm³/r [4.6 in³/r]

<table>
<thead>
<tr>
<th>Charge Pump Displacement</th>
<th>A Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9 cm³/r [0.85 in³/r]</td>
<td>300.3 [11.82]</td>
</tr>
<tr>
<td>17.4 cm³/r [1.06 in³/r]</td>
<td>303.7 [11.96]</td>
</tr>
<tr>
<td>21.0 cm³/r [1.28 in³/r]</td>
<td>307.2 [12.10]</td>
</tr>
<tr>
<td>27.9 cm³/r [1.70 in³/r]</td>
<td>314.1 [12.37]</td>
</tr>
</tbody>
</table>

* A Dimension
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Opposite Side Porting

Model Code 54, 64, 75

54 cm³/r [3.3 in³/r]
64 cm³/r [3.9 in³/r]
75 cm³/r [4.6 in³/r]

Optional Magnetic Speed Sensor
Mating 2 Way Connector
Connector P/N 1216 2163 (1)
Pin Terminal P/N 121 4075 (2)
Cable Seal P/N 1204 8086 (2)
All Part Numbers are Packard Electric

Table: S.A.E. O' Ring Port Size

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>S.A.E. O' Ring Port Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>B</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>C</td>
<td>Charge Gauge Port</td>
<td>7/8-14 UN-2B</td>
</tr>
<tr>
<td>D</td>
<td>Case Drain Port</td>
<td>1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>E</td>
<td>Charge Pressure Inlet Port</td>
<td>1 5/16-12 UN-2B</td>
</tr>
<tr>
<td>F</td>
<td>Gauge Port, System Port B</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>G</td>
<td>Gauge Port, System Port A</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>H</td>
<td>Gauge Port Servo 1</td>
<td>7/16-20 UNF-2B</td>
</tr>
<tr>
<td>I</td>
<td>Gauge Port Servo 2</td>
<td>7/16-20 UNF-2B</td>
</tr>
</tbody>
</table>

DO NOT REMOVE PLUG
CAN NOT BE USED AS A CASE DRAIN PORT

Weight
58 kg [128 lbs.]
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Same Side Porting

Model Code 54, 64, 75

54 cm³/r [3.3 in³/r]
64 cm³/r [3.9 in³/r]
75 cm³/r [4.6 in³/r]
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Same Side Porting

Model Code 54, 64, 75

54 cm³/r [3.3 in³/r]
64 cm³/r [3.9 in³/r]
75 cm³/r [4.6 in³/r]

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>S.A.E. 'O' Ring Port Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>B</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>D</td>
<td>Charge Gauge Port</td>
<td>7/8-14 UN-2B</td>
</tr>
<tr>
<td>E</td>
<td>Case Drain Port</td>
<td>1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>F</td>
<td>Case Drain Port</td>
<td>1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>H</td>
<td>Charge Pressure Inlet Port</td>
<td>1 5/16-12 UN-2B</td>
</tr>
<tr>
<td>P</td>
<td>Gauge Port, System Port B</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>N</td>
<td>Gauge Port, System Port A</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>J</td>
<td>Gauge Port Servo 1</td>
<td>7/16-20 UNF-2B</td>
</tr>
<tr>
<td>K</td>
<td>Gauge Port Servo 2</td>
<td>7/16-20 UNF-2B</td>
</tr>
</tbody>
</table>
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Opposite Side Porting

Model Code 89, 105
89 cm³/r [5.4 in³/r]
105 cm³/r [6.4 in³/r]

<table>
<thead>
<tr>
<th>Charge Pump Displacement</th>
<th>* A Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9 cm³/r [0.85 in³/r]</td>
<td>337.1[13.27]</td>
</tr>
<tr>
<td>17.4 cm³/r [1.06 in³/r]</td>
<td>340.5[13.40]</td>
</tr>
<tr>
<td>21.0 cm³/r [1.28 in³/r]</td>
<td>344.0[13.55]</td>
</tr>
<tr>
<td>27.9 cm³/r [1.70 in³/r]</td>
<td>350.9[13.81]</td>
</tr>
<tr>
<td>34.7 cm³/r [2.12 in³/r]</td>
<td>357.7[14.08]</td>
</tr>
</tbody>
</table>
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Opposite Side Porting

Model Code 89, 105

89 cm³/r [5.4 in³/r]
105 cm³/r [6.4 in³/r]

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>S.A.E. 'O' Ring Port Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>B</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>D</td>
<td>Charge Gauge Port</td>
<td>7/8-14 UN-2B</td>
</tr>
<tr>
<td>E</td>
<td>Case Drain Port</td>
<td>1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>F</td>
<td>Case Drain Port</td>
<td>1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>H</td>
<td>Charge Pressure Inlet Port</td>
<td>1 5/16-12 UN-2B</td>
</tr>
<tr>
<td>P</td>
<td>Gauge Port, System Port B</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>N</td>
<td>Gauge Port, System Port A</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>J</td>
<td>Gauge Port Servo 1</td>
<td>7/16-20 UNF-2B</td>
</tr>
<tr>
<td>K</td>
<td>Gauge Port Servo 2</td>
<td>7/16-20 UNF-2B</td>
</tr>
</tbody>
</table>

Weight

81 kg [178 lbs.]
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Same Side Porting

Model Code 89, 105

<table>
<thead>
<tr>
<th>Charge Pump Displacement</th>
<th>A Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9 cm³/r [0.85 in³/r]</td>
<td>337.1 [13.27]</td>
</tr>
<tr>
<td>17.4 cm³/r [1.06 in³/r]</td>
<td>340.5 [13.40]</td>
</tr>
<tr>
<td>21.0 cm³/r [1.28 in³/r]</td>
<td>344.0 [13.55]</td>
</tr>
<tr>
<td>27.9 cm³/r [1.70 in³/r]</td>
<td>350.9 [13.81]</td>
</tr>
<tr>
<td>34.7 cm³/r [2.12 in³/r]</td>
<td>357.7 [14.08]</td>
</tr>
</tbody>
</table>

PORT (A) SEE PORT OPTIONS

PORT (B)

PORT (E)

PORT (F)

CHARGE PUMP INLET PORT

CENTERLINE OF CHARGE PUMP INLET PORT

SEE AUXILIARY MOUNTING OPTIONS

OPTIONAL SPEED SENSOR

MATING 2 WAY CONNECTOR PACKARD ELECTRIC

P/N 1216 2193 CONNECTOR (1)

P/N 1212 4075 PIN TERMINAL (2)

P/N 1204 8086 CABLE SEAL (2)

DO NOT REMOVE PLUG CAN NOT BE USED AS A CASE DRAIN PORT
Heavy Duty Series 2 Hydrostatic Pump

Pump Dimensions - Same Side Porting

Model Code 89, 105

89 cm³/r [5.4 in³/r]
105 cm³/r [6.4 in³/r]

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
<th>S.A.E. 'O' Ring Port Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>B</td>
<td>Main Port</td>
<td>1" per Code 61 per J518</td>
</tr>
<tr>
<td>D</td>
<td>Charge Gauge Port</td>
<td>7/8-14 UN-2B</td>
</tr>
<tr>
<td>E</td>
<td>Case Drain Port</td>
<td>1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>F</td>
<td>Case Drain Port</td>
<td>1 1/16-12 UN-2B</td>
</tr>
<tr>
<td>H</td>
<td>Charge Pressure Inlet Port</td>
<td>1 5/16-12 UN-2B</td>
</tr>
<tr>
<td>P</td>
<td>Gauge Port, System Port B</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>N</td>
<td>Gauge Port, System Port A</td>
<td>9/16-18 UNF-2B</td>
</tr>
<tr>
<td>J</td>
<td>Gauge Port Servo 1</td>
<td>7/16-20 UNF-2B</td>
</tr>
<tr>
<td>K</td>
<td>Gauge Port Servo 2</td>
<td>7/16-20 UNF-2B</td>
</tr>
<tr>
<td>M</td>
<td>Remote Filter Port, Outlet</td>
<td>7/8-14 UN-2B</td>
</tr>
<tr>
<td>W</td>
<td>Remote Filter Port, Inlet</td>
<td>7/8-14 UN-2B</td>
</tr>
</tbody>
</table>
Heavy Duty Series 2 Hydrostatic Pump

Series 2 - Specifications

<table>
<thead>
<tr>
<th>Model Code Number</th>
<th>54</th>
<th>64</th>
<th>75</th>
<th>89</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Mounting Flange</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Max. Shaft Speed*</td>
<td>RPM @ Max. Displ.</td>
<td>4510</td>
<td>4165</td>
<td>4165</td>
<td>3720</td>
</tr>
<tr>
<td>Case Pressure</td>
<td>Cont.</td>
<td>2.25 bar [40 PSI]</td>
<td>13.8 bar [200 PSI]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gal/min @ 3500 PSI</td>
<td>105 cm³/r [6.4 in³/r]</td>
<td>89 cm³/r [5.4 in³/r]</td>
<td>75 cm³/r [4.6 in³/r]</td>
<td>64 cm³/r [3.9 in³/r]</td>
</tr>
<tr>
<td>Input Torque</td>
<td>N·m @ 240 bar</td>
<td>218 [1944]</td>
<td>256 [2278]</td>
<td>303 [2694]</td>
<td>358 [3189]</td>
</tr>
<tr>
<td></td>
<td>lbf·in @ 3500 PSI</td>
<td>105 cm³/r [6.4 in³/r]</td>
<td>89 cm³/r [5.4 in³/r]</td>
<td>75 cm³/r [4.6 in³/r]</td>
<td>64 cm³/r [3.9 in³/r]</td>
</tr>
<tr>
<td>Temperature Rating</td>
<td>82°C [180°F]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Series 2 - Performance

System Pressure: 240 bar [3500 PSI]
Oil Viscosity: 10 cSt [60 SUS]
Temperature: 82°C [180°F]
Eaton's Series 2 pump offers a choice of five integral charge pump displacements. The Charge Pump design allows greater throughput-torque for tandem pumps and multiple motor applications. These charge pumps include a large standard suction port and a gauge/pilot pressure port. Charge pump pressure side filtration is also available (see page 28).

The charge pump generates a low pressure flow of oil to perform the following functions:

1. Keeps the closed loop circuit full of oil.
2. Provides control pressure to the pump’s displacement control servo valve for easy control of the transmission’s output speed.
3. Provides cool, clean oil from the reservoir to keep the transmission pump and motor well lubricated and cooled.
4. Supplies a positive boost pressure to the pistons of the piston pump and piston motor.

<table>
<thead>
<tr>
<th>Maximum Shaft Speed</th>
<th>RPM</th>
<th>4300</th>
<th>3700</th>
<th>3300</th>
<th>2700</th>
<th>2250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Flow** at Maximum Speed</td>
<td>l/min</td>
<td>59.9</td>
<td>64.3</td>
<td>69.2</td>
<td>75.2</td>
<td>78.2</td>
</tr>
<tr>
<td></td>
<td>gal/min</td>
<td>15.8</td>
<td>17.0</td>
<td>18.3</td>
<td>19.9</td>
<td>20.6</td>
</tr>
<tr>
<td>Input Horsepower** at Maximum Speed</td>
<td>kW</td>
<td>2.10</td>
<td>2.25</td>
<td>2.42</td>
<td>2.63</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>HP</td>
<td>2.81</td>
<td>3.02</td>
<td>3.25</td>
<td>3.53</td>
<td>3.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series 2 Pump Displacement</th>
<th>Standard</th>
<th>Optional</th>
<th>Optional</th>
<th>Optional</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>54 cm³/r [3.3 in³/r]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 cm³/r [3.9 in³/r]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 cm³/r [4.6 in³/r]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 cm³/r [5.4 in³/r]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 cm³/r [6.4 in³/r]</td>
<td>Optional</td>
<td>Standard</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
</tbody>
</table>

* Used with Pump Displacement
** Theoretical output flow and input power at 21 bar [305 PSI] and maximum input speed.

Charge Pump Power vs Speed

Charge Pump Flow vs Speed
Heavy Duty Series 2 Hydrostatic Pump

Model Code

The following 31-digit coding system has been developed to identify all of the configuration options for the Series 2 hydrostatic pump. Use this model code to specify a pump with the desired features. All 31-digits of the code must be present when ordering. You may want to photocopy the matrix below to ensure that each number is entered in the correct box.

<table>
<thead>
<tr>
<th>Model Code—Heavy Duty Series 2 Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Position 1, 2, 3 - Product Series
ACL........... Hydrostatic-Heavy Duty Variable Pump (Series 2)

Position 4, 5, 6 - Displacement
054 54 cm³/r [3.3 in³/r]
064 64 cm³/r [3.9 in³/r]
075 75 cm³/r [4.6 in³/r]
089 89 cm³/r [5.4 in³/r]
105 105 cm³/r [6.4 in³/r]

Position 7, 8 - Input Shaft
02 23 Tooth 16/32 Pitch Spline w/3/8-24 UNF x 19.05 [.750] minimum full thread in end of shaft
03 38 [1.50] diameter tapered w/ 9.525 [.375] x 25.4 [1.00] square key
13 13 Tooth 8/16 Pitch Spline
14 14 Tooth 12/24 Pitch Spline
21 21 Tooth 16/32 Pitch Spline
23 23 Tooth 16/32 Pitch Spline
28 27 Tooth 24/48 Pitch Spline

Position 9 - Input Rotation
L Counterclockwise (Lefthand)
R Clockwise (Righthand)

Position 10 - Valve Plate
0 V-groove
1 Propel
3 Quiet Valve Plate

Position 11 - Main Ports (Includes Gage Ports)
A 25,4 [1.00] - Code 61 Per SAE J518
B 25,4 [1.00] - Code 62 Per SAE J518
C 25,4 [1.00] - Code 61 w/ M10 x 1 Threaded Holes
D 25,4 [1.00] - Code 62 w/ M12 x 1.75 Threaded Holes
E 25,4 [1.00] - Code 62 per SAE J518 same side location

Position 12, 13 - High Press Relief Valve Setting Ports A & B
NOTE: You must choose relief valve settings for both ports A & B
0 None
M 207 bar [3000 PSI]
N 241 bar [3500 PSI]
P 276 bar [4000 PSI]
R 310 bar [4500 PSI]
S 345 bar [5000 PSI]

Position 14, 15 - Press Override (POR) Setting Ports A & B
NOTE: You must choose pressure override settings for both ports A and B. The pressure override setting should be 35 bar less than the high pressure relief valve.

A Pressure Transducer (No pressure override valve)
B 207 bar [3000 PSI]
C 241 bar [3500 PSI]
D 276 bar [4000 PSI]
E 310 bar [4500 PSI]
F 345 bar [5000 PSI]
G 379 bar [5500 PSI]
H 415 bar [6000 PSI]
K 395 bar [5750 PSI]
L 103 bar [1500 PSI]
M 172 bar [2500 PSI]

Position 16, 17 - Special Pump Features
00 No Special Features
01 Plugged Magnetic Speed Sensor Port
02 Magnetic Speed Sensor
03 Adjustable Servo Stop (one direction)
12 Rear Pump Unit for Tandem Assy. (no shaft seal)
13 Servo Piston w/ Externally Adjustable Stops in both Directions
14 Rear Pump Unit for Tandem Assy. (no shaft seal), servo Piston w/ Externally Adjustable Stops in both Directions

Position 18, 19 - Control
EE Electronic Proportional Control 12 and 24 Volt DC with 1 to 6 Volt Potentiometric Command Input

Position 20 - Valve Plate
0 V-groove
1 Propel
3 Quiet Valve Plate

Position 21 - Input Shaft
02 23 Tooth 16/32 Pitch Spline w/3/8-24 UNF x 19.05 [.750] minimum full thread in end of shaft
03 38 [1.50] diameter tapered w/ 9.525 [.375] x 25.4 [1.00] square key
13 13 Tooth 8/16 Pitch Spline
14 14 Tooth 12/24 Pitch Spline
21 21 Tooth 16/32 Pitch Spline
23 23 Tooth 16/32 Pitch Spline
28 27 Tooth 24/48 Pitch Spline

EP Electronic Proportional Control 12 Volt DC w/out Electronic Driver
ED Electronic Proportional Control 24 Volt DC w/out Electronic Driver
EE Electronic Proportional Control 12 and 24 Volt DC with 1 to 6 Volt Potentiometric Command Input

Position 22 - High Press Relief Valve Setting Ports A & B
NOTE: You must choose relief valve settings for both ports A & B

0 None
M 207 bar [3000 PSI]
N 241 bar [3500 PSI]
P 276 bar [4000 PSI]
R 310 bar [4500 PSI]
S 345 bar [5000 PSI]
Heavy Duty Series 2 Hydrostatic Pump

Model Code

<table>
<thead>
<tr>
<th>EG</th>
<th>Electronic Proportional Control 12 and 24 Volt DC and Electronic Driver with +/-20 mA Command Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>Electronic Proportional Control 12 and 24 Volt and Electronic Driver with +/-100 mA Command Input</td>
</tr>
<tr>
<td>FR</td>
<td>Forward-Neutral-Reverse Control 12 Volt w/2 2-Pin Weatherpack Connectors</td>
</tr>
<tr>
<td>FS</td>
<td>Forward-Neutral-Reverse Control 24 Volt w/2 2-Pin Weatherpack Connectors</td>
</tr>
<tr>
<td>HA</td>
<td>Hydraulic Remote Control with 5-15 bar [73-218 PSI control range]</td>
</tr>
<tr>
<td>MA</td>
<td>Manual Displacement Control</td>
</tr>
<tr>
<td>MB</td>
<td>Manual Displacement Control with Normally Closed Neutral Lockout Switch</td>
</tr>
<tr>
<td>MC</td>
<td>Manual Displacement Control with Normally Open Neutral Lockout Switch</td>
</tr>
<tr>
<td>MG</td>
<td>Manual Displacement Control with Neutral Detent</td>
</tr>
<tr>
<td>ML</td>
<td>Manual Displacement Control w/Wide Band Neutral</td>
</tr>
<tr>
<td>SE</td>
<td>Solenoid Control 12 Volt with Swashplate Feedback Sensor</td>
</tr>
</tbody>
</table>

Position 20 - Control Orifice Supply (P)

<table>
<thead>
<tr>
<th>Position 21</th>
<th>Control Orifice Servo (S)</th>
</tr>
</thead>
</table>

* Eaton recommends you choose an orifice for control orifice supply (P), servo orifice (S,), and servo orifice (S,).

Position 23 - Control Special Features

- 0 No Control Special Features
- 3 Destroke valve

Position 24 - Charge Pump Displacement

<table>
<thead>
<tr>
<th>Position 25</th>
<th>Auxiliary Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None (Models 54 to 105)</td>
</tr>
</tbody>
</table>

Position 26 - Charge Pump Options

<table>
<thead>
<tr>
<th>Position 27</th>
<th>Charge Pressure Relief Valve Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21 bar [304.6 PSI] - Standard</td>
</tr>
<tr>
<td>C</td>
<td>24 bar [348 PSI]</td>
</tr>
<tr>
<td>E</td>
<td>27 bar [391.6 PSI]</td>
</tr>
</tbody>
</table>

Position 28 - Charge Pump Special Features

- 0 No Charge Pump Special Features

Position 29 - Paint and Packaging

- 0 Painted Primer Blue (Standard)

Position 30 - Identification On Unit

- 0 Standard

Position 31 - Design Code

- A A
Heavy Duty Series 2 Hydrostatic Pump

Input Shaft Options

Model Code Position 7, 8

23 Tooth

- Torque: 1469 N·m
- Input Shaft: 13,000 lbf·in

Model Code 02

13 Tooth

- Torque: 1921 N·m
- Input Shaft: 17,000 lbf·in

Model Code 13

21 Tooth

- Torque: 1130 N·m
- Input Shaft: 10,000 lbf·in

Model Code 21

27 Tooth

- Torque: 734 N·m
- Input Shaft: 6,500 lbf·in

Model Code 28

1.50 Tapered

- Torque: 836 N·m
- Input Shaft: 7,400 lbf·in

Model Code 03

1.50 Tapered

- Torque: 836 N·m
- Input Shaft: 7,400 lbf·in

Model Code 03

1.50 Tapered

- Torque: 836 N·m
- Input Shaft: 7,400 lbf·in

Model Code 03

23 Tooth

- Torque: 1469 N·m
- Input Shaft: 13,000 lbf·in

Model Code 23

23 Tooth

- Torque: 1469 N·m
- Input Shaft: 13,000 lbf·in

Model Code 23

47.63 x 0.51

- SHAFT KEY X

63.50 x 0.03

- TAPERED HOLE FOR REAR UNIT OF TANDEM WITH FRONT UNIT HAVING INTEGRAL C-PAD
Heavy Duty Series 2 Hydrostatic Pump

Pump Features and Options

High Pressure Relief Valve
Model Code Position 12 & 13
The High Pressure Relief Valves for ports A and B activate whenever system pressure equals the relief valve setting. The valves are direct acting and help protect system components from excessive pressure spikes.

Pressure Override
Model Code Position 14 & 15
The Pressure Override Control (POR) is used in combination with the high pressure relief valves, to protect the transmission when operated for extended periods at overload pressures. If the system pressure reaches a preset limit, the pump destrokes and adjusts its displacement to the load. The POR is available in a number of pressure settings.

Special Pump Features
Model Code 02 in Position 16 & 17

Charge Pump Options
The Series 2 Hydrostatic Pump contains an integral charge pump that may be provided with various filtration options. A standard charge pump will use suction filtration where practical. This arrangement is detailed in the diagram on page 29 and followed by the filter recommendations on page 31. For applications where suction filtration is not practical, the option below may be selected.

Remote Filter Ports (Optional)
Model Code A in Position 26
Remote pressure filter ports allow you to mount a pressure side filter in a more easily accessible location. The filter ports accept 7/8-14 UNF-2B SAE ‘O’ Ring fittings. The filter and lines must be able to withstand pressures up to 70 bar [1000 PSI].
Control Options
Model Code Positions 18 & 19

The wide variety of available controls on the Eaton® Heavy Duty Series 2 Pump offers vehicle designers the control necessary for optimal vehicle performance. Many of these controls are combined as single control options; please refer to the model code for the specific option configuration. For combinations other than shown, contact an Eaton representative.

Manual Controls - Dimensions
Control Options
Model Code Positions 18 & 19

Standard Manual Displacement Control (MA)
The standard manual displacement control, the most common control option, typically connects directly with mechanical linkages or cables.

Manual Displacement Control with Wide Band Neutral Detent (ML)
This control is the same as the above with an increased neutral band.

Manual Control with Neutral Detent (MC)
The neutral detent feature provides a more positive feel when finding neutral. This option is ideal for transmissions with long control linkages or cables, or in other situations where there is a great deal of space between the operator station and the pump.

Manual Control with Neutral Lockout (MB)
The neutral lock-out feature is an electrical switch that is closed or open when the transmission is in neutral. This switch can be used to prevent the activation of certain functions that require the pump to be in neutral. The lock-out feature is commonly used to prevent starting the prime mover or activating auxiliary functions. The electrical switch is available as normally open or normally closed.

Mating Connector
Connector P/N 1201 5792 (1)
Terminal P/N 1208 9040 (2)
Cable Seal P/N 1201 5323 (2)
All Part Numbers are Packard Electric

Control Options
Model Code Positions 18 & 19
Hydraulic Remote Control
Model Code HA in Position 18, 19

The hydraulic remote pump control makes it possible to control pump flow by changing pump displacement via a remote pilot pressure signal. The angle of the swashplate, that determines pump displacement, is proportional to the pilot pressure. Typical pressure requirements are 5-15 bar (72.5 - 217.5 PSI) with a swashplate angle from 0° to 18°, (15.5° for the Model 33).

The hydraulic remote pump control is readily adaptable in the following applications:

- Where remote transmission control is needed
- Where control cables or linkages are not feasible
- Where electronic controls cannot be used.

The Eaton hydraulic remote pump control is compatible with:

- All Eaton Series 2 Variable Pumps (Models 33-64)
- Other Eaton control options such as the destroke control, inching control, and pressure override
- Most commercially available hydraulic command stations

The hydraulic remote pump control is a three position, four-way closed center (spring centered) hydraulically activated servo control. This control, like the manual displacement control uses the feedback linkage connected directly to the swashplate.

The control spool is activated to position the swashplate by regulating the remote pilot pressure to the control piston. There are various manufacturers of command stations that can be used to supply this remote pilot pressure.
Heavy Duty Series 2 Hydrostatic Pump

Electronic Proportional Displacement Control
Model Code EC, ED, EE, EG, EL in Position 18, 19

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Model Code Description</th>
<th>Typical Input Devices</th>
<th>Nominal Command Input Impedance of Electronics Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE</td>
<td>1 to 6 Vdc Potentiometric</td>
<td>Joysticks or Potentiometers with a resistance between 160 ohms and 50K ohms.</td>
<td>500K Ohms</td>
</tr>
<tr>
<td>EG</td>
<td>± 20 mA Current loop (4-20 mA)</td>
<td>Programmable Logic Controllers (PLC)</td>
<td>250 Ohms</td>
</tr>
<tr>
<td>EL</td>
<td>± 100 mA differential</td>
<td>Torque motor servo valve current drivers</td>
<td>28 Ohms</td>
</tr>
<tr>
<td>EC</td>
<td>12 Volts</td>
<td>Requires customer supplied electronics</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>24 Volts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Electronic Proportional (EP) displacement control is ideal for applications requiring electronic pump displacement control. The EP displacement control provides the flexibility of three command input choices. Control components include a proportional solenoid actuated valve assembly and an electronic solenoid driver module mounted on the pump. The control driver module converts a command input signal to a proportional current output to the proportional solenoids resulting in a proportional pump displacement.

The EP displacement control has been designed to withstand the rigors of off-highway equipment environmental conditions.

EP Displacement Control Features

- Ease of installation
- Automotive style environmentally sealed Metri-Pack connectors
- Operates from 12 or 24 Vdc power supply
- External fuse (customer supplied): 3A for 12 Vdc system, 1A for 24 Vdc system
- Three choices for command input signal
- Operating temperature range -40°C to +85°C
- Control driver module encapsulated for environmental protection
- Closed loop current control compensates for resistance change of the proportional solenoids due to temperature variations
- Return to neutral for loss of power, or loss of command input signal
- Mechanical feedback of swashplate position for closed loop control
- External neutral adjustment
- Manual override capability
- Control drive module qualification per SAE J1455, SAE J1113, CISPR 25

Control Driver Module Qualification

(Contact Eaton for Specific Levels)

- SAE J1455 - Recommended Environmental Practices for Electronic Equipment Design
 - Humidity/Temperature Extreme Cycling
 - Salt Spray
 - Splash & Immersion
 - Steam Cleaning/High Pressure Wash
 - Vibration
 - Mechanical Shock
 - Temperature Cycling
 - Load Dump Transients
 - Inductive Load Switching Transients
- SAE J1113 - Electromagnetic Susceptibility Measurement Procedures for Vehicle Components
 - EMI/EMC - Conducted & Radiated Emissions
Electronic Proportional Displacement Control
Model Code EE, EG, EL in Position 18, 19

Interface Schematic

Power Supply Connector*

Control Driver Module

Proportional Solenoid 1

Proportional Solenoid 2

Solenoid Actuated Valve Assembly

Note: Customer supplies:
1A fuse for 24Vdc system
2A fuse for 12Vdc system

** Command Input Signal Connector**

<table>
<thead>
<tr>
<th>Command Input Signal</th>
<th>Pins</th>
<th>Wire Color</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 6 Vdc Potentiometric</td>
<td>A</td>
<td>Black</td>
<td>Ref Low - 1 Vdc</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Green</td>
<td>Command (wiper)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Red</td>
<td>Ref H - 6 Vdc</td>
</tr>
<tr>
<td>± 20 mA Current loop (4-20 mA)</td>
<td>A</td>
<td>Orange</td>
<td>Loop Return</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>White</td>
<td>Loop In</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>No Connection Required*</td>
</tr>
<tr>
<td>± 100 mA differential</td>
<td>A</td>
<td>Blue</td>
<td>Loop Return</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>White</td>
<td>Loop In</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>No Connection Required*</td>
</tr>
</tbody>
</table>

* Mating connector kit 999762-000 contains plug to be used to seal mating end connector.

Solenoid Actuated Valve Assembly
Heavy Duty Series 2 Hydrostatic Pump

Electronic Proportional Displacement Control
Model Code EE, EG, EL in Position 18, 19

Mating Connector Kit: Eaton P/N 990762-000*
Recommended: Wire Size 16-18 AWG,
Cable Dia. 2.03 - 2.80 mm
Kit includes:
Mating Connectors for 2-pin Power Supply Connector,
3-pin Command Input Signal Connector

* Delphi/Packard
Mating Connector Part Numbers:
Recommended: Wire Size 16-18 AWG,
Cable Dia. 2.03 - 2.80 mm
Reference Source: Pioneer-Standard Electronics
1-800 257-6613
1) Power Supply 2-pin connector
Connector P/N 1205 2641
Terminal P/N 1204 8074
TPA P/N 1205 2834
Cable Seal 1204 8086
2) Command Input Signal 3 Pin Connector
Connector P/N 1211 0293
Terminal P/N 1204 8074
TPA P/N 1205 2845
Cable Seal 1204 8086

Note: In order to assure the most reliable installation and operation of any
electronic control, proper installation methods should be followed with
respect to interconnection wiring harness, command signal devices, fusing,
and input power switching. Proper care should be taken to prevent damage
to all electrical and electronic components due to abrasion, moving objects,
heat, moisture or other environmental hazards. For safety critical
applications, Eaton recommends that a switch be installed in line with (+
Battery) power to the module so that power may quickly be disconnected in
case of emergency. A 2 ampere slow blow fuse should always be installed
in the + battery line. It is recommended that during initial start-up and
checkout, the machine be placed on jack stands to prevent inadvertent
movement of the machine.

<table>
<thead>
<tr>
<th>Command Input Signal</th>
<th>A (max)</th>
<th>B (min)</th>
<th>C</th>
<th>D (min)</th>
<th>E (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 6 Vdc</td>
<td>1.5 Vdc</td>
<td>3.3 Vdc</td>
<td>3.5 Vdc</td>
<td>3.7 Vdc</td>
<td>5.5 Vdc</td>
</tr>
<tr>
<td>4-20 mA*</td>
<td>-20 mA</td>
<td>-4.5 mA</td>
<td>0 mA</td>
<td>+4.5 mA</td>
<td>+20 mA</td>
</tr>
<tr>
<td>± 100 mA</td>
<td>-100 mA</td>
<td>-7.5 mA</td>
<td>0 mA</td>
<td>+7.5 mA</td>
<td>+100 mA</td>
</tr>
</tbody>
</table>

* Note: The -20 mA command input signal configuration operates the pump in
one direction. The customer has to change the polarity on the -20 mA signal to
operate the pump in the opposite direction.

General Relationship between Command Signal Input and Pump Flow

A Port Flow 100%
Ccw Rotation Pump

Command Signal input

% Pump Output Flow

A B C D E
Operating Range Neutral Range Operating Range

B Port Flow 100%
Ccw/Pump Rotation
Heavy Duty Series 2 Hydrostatic Pump

Multiplex Control with CAN Communication

Model Code EB in Position 18, 19

<table>
<thead>
<tr>
<th>Type of Control</th>
<th>Control Model Code</th>
<th>Model Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement Control</td>
<td>EB (position 18, 19)</td>
<td>Multiplex Electronic Displacement Control</td>
</tr>
<tr>
<td>Pressure Control</td>
<td>To Be Determined</td>
<td></td>
</tr>
<tr>
<td>Note: This option can provide both displacement and pressure control.</td>
<td>A (position 14)</td>
<td>Pressure Transducer - Port A</td>
</tr>
<tr>
<td></td>
<td>A (position 15)</td>
<td>Pressure Transducer - Port B</td>
</tr>
<tr>
<td></td>
<td>02 (position 16,17)</td>
<td>Magnetic Speed Sensor</td>
</tr>
</tbody>
</table>

The Multiplex Control is a fast and accurate electronic control for displacement and/or pressure control. The CAN Multiplex control is designed to interface with a main vehicle computer containing software for the desired vehicle characteristics and system diagnostics.

The Multiplex Control for displacement and/or pressure control includes a Solenoid Control with a rotary sensor for swashplate feedback. The pressure control option also includes two pressure transducers and a speed sensor.

Potential Multiplex Control applications include automotive drive control, motor output torque or pressure control, motor output speed control, multiple pump control and programmed pump control.

The Multiplex Control has been designed to withstand the rigors of off-highway equipment environmental conditions.

Multiplex Control Features

- Ease of installation - single external connector
- Pump mounted electronics and sensors
- Automatically accommodates for 12 or 24 Vdc power supply
- External 5A fuse (customer supplied)
- Operating temperature -40°C to +105°C
- Environmentally sealed
- Electric short and open protection
- Reverse voltage protection
- Diagnostics accessible from CAN
- Dual-error channel design for return to neutral
- Return to neutral for loss of electrical swashplate feedback, loss of pressure sensor, loss of solenoid or loss of CAN communication
- Continuous calibration for improved temperature compensation
- Multiplex design for simpler cable harnesses and sharing of sensor data
- CAN electrical interface options include J1939/11 (Bosch layer)
- CAN protocol per SAE J1939
- CAN Multiplex electronics qualification per SAE J1455, SAE J1113, CISPR/D/WG2, ISO 7637.

Multiplex Electronics Qualification

(Contact Eaton for Specific Levels)

- SAE J1455 - Recommended Environmental Practices for Electronic Equipment Design
- Humidity/Temperature Extreme Cycling
- Salt Spray
- Splash and Immersion
- Steam Cleaning/High Pressure Wash
- Vibration
- Mechanical Shock
- Temperature Cycling
- Inductive Switching Transients
- ESD Unpowered
- SAE J1113 - Electromagnetic Susceptibility Measurement Procedures for Vehicle Components
- EMI/EMC - Conducted & Radiated Immunity
- ESD Powered
- EMI/EMC Conducted & Radiated Emissions
- ISO 7637 - Road Vehicles - Electrical Disturbance by Conduction & Coupling
- Load Dump Transients

Type of Control Control Model Code Model Code Description

<table>
<thead>
<tr>
<th>Type of Control</th>
<th>Control Model Code</th>
<th>Model Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement Control</td>
<td>EB (position 18, 19)</td>
<td>Multiplex Electronic Displacement Control</td>
</tr>
<tr>
<td>Pressure Control</td>
<td>To Be Determined</td>
<td></td>
</tr>
<tr>
<td>Note: This option can provide both displacement and pressure control.</td>
<td>A (position 14)</td>
<td>Pressure Transducer - Port A</td>
</tr>
<tr>
<td></td>
<td>A (position 15)</td>
<td>Pressure Transducer - Port B</td>
</tr>
<tr>
<td></td>
<td>02 (position 16,17)</td>
<td>Magnetic Speed Sensor</td>
</tr>
</tbody>
</table>

Multiplex Control with CAN Communication

Model Code EB in Position 18, 19

<table>
<thead>
<tr>
<th>Type of Control</th>
<th>Control Model Code</th>
<th>Model Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement Control</td>
<td>EB (position 18, 19)</td>
<td>Multiplex Electronic Displacement Control</td>
</tr>
<tr>
<td>Pressure Control</td>
<td>To Be Determined</td>
<td></td>
</tr>
<tr>
<td>Note: This option can provide both displacement and pressure control.</td>
<td>A (position 14)</td>
<td>Pressure Transducer - Port A</td>
</tr>
<tr>
<td></td>
<td>A (position 15)</td>
<td>Pressure Transducer - Port B</td>
</tr>
<tr>
<td></td>
<td>02 (position 16,17)</td>
<td>Magnetic Speed Sensor</td>
</tr>
</tbody>
</table>

The Multiplex Control is a fast and accurate electronic control for displacement and/or pressure control. The CAN Multiplex control is designed to interface with a main vehicle computer containing software for the desired vehicle characteristics and system diagnostics.

The Multiplex Control for displacement and/or pressure control includes a Solenoid Control with a rotary sensor for swashplate feedback. The pressure control option also includes two pressure transducers and a speed sensor.

Potential Multiplex Control applications include automotive drive control, motor output torque or pressure control, motor output speed control, multiple pump control and programmed pump control.

The Multiplex Control has been designed to withstand the rigors of off-highway equipment environmental conditions.

Multiplex Control Features

- Ease of installation - single external connector
- Pump mounted electronics and sensors
- Automatically accommodates for 12 or 24 Vdc power supply
- External 5A fuse (customer supplied)
- Operating temperature -40°C to +105°C
- Environmentally sealed
- Electric short and open protection
- Reverse voltage protection
- Diagnostics accessible from CAN
- Dual-error channel design for return to neutral
- Return to neutral for loss of electrical swashplate feedback, loss of pressure sensor, loss of solenoid or loss of CAN communication
- Continuous calibration for improved temperature compensation
- Multiplex design for simpler cable harnesses and sharing of sensor data
- CAN electrical interface options include J1939/11 (Bosch layer)
- CAN protocol per SAE J1939
- CAN Multiplex electronics qualification per SAE J1455, SAE J1113, CISPR/D/WG2, ISO 7637.

Multiplex Electronics Qualification

(Contact Eaton for Specific Levels)

- SAE J1455 - Recommended Environmental Practices for Electronic Equipment Design
- Humidity/Temperature Extreme Cycling
- Salt Spray
- Splash and Immersion
- Steam Cleaning/High Pressure Wash
- Vibration
- Mechanical Shock
- Temperature Cycling
- Inductive Switching Transients
- ESD Unpowered
- SAE J1113 - Electromagnetic Susceptibility Measurement Procedures for Vehicle Components
- EMI/EMC - Conducted & Radiated Immunity
- ESD Powered
- EMI/EMC Conducted & Radiated Emissions
- ISO 7637 - Road Vehicles - Electrical Disturbance by Conduction & Coupling
- Load Dump Transients
Heavy Duty Series 2 Hydrostatic Pump

Multiplex Control with CAN Communication
Model Code EB in Position 18, 19

Mating 14 Way Connector
- Housing P/N 1203 4163 (1)
- Housing Terminal P/N 1204 7680 (8)
- Housing Plug P/N 1203 4413 (6)

All Numbers are Packard Electric

<table>
<thead>
<tr>
<th>Displacement</th>
<th>* Dimension A</th>
</tr>
</thead>
<tbody>
<tr>
<td>54; 64; 75 cm³/r</td>
<td>187.5</td>
</tr>
<tr>
<td>[3.3, 3.9, 4.6 in³/r]</td>
<td>[7.38]</td>
</tr>
<tr>
<td>89; 105 cm³/r</td>
<td>213.5</td>
</tr>
<tr>
<td>[5.4, 6.4 in³/r]</td>
<td>[84.05]</td>
</tr>
</tbody>
</table>

Displacement Command Input
- A Port flow 100% CCW Pump Rotation
- B Port flow 100% CCW Pump Rotation

Interface Schematic
- A Port Pressure Transducer
- B Port Pressure Transducer
- Magnetic Speed Sensor
- Proportional Solenoid Valve 1
- Proportional Solenoid Valve 2
- Solenoid Control

General Relationship Between Command Input and Pump Flow
- A Port flow 100% CCW/Pump Rotation
- B Port flow 100% CCW/Pump Rotation

Terminal Letter "A" Terminal Letter "P"

12.45 ± .25 [.490 ± .010]
15.7 [.62]
Heavy Duty Series 2 Hydrostatic Pump

Solenoid Control w/ Swashplate Feedback Sensor
Model Code SE in Position 18, 19

Note: Multiplex control includes Solenoid w/electronic swashplate sensor.
Forward - Neutral - Reverse Control
Model Code FR, FS in Position 18, 19

Control Special Features - Destroke Valve
Model Code 3 in Position 23

The destroke solenoid valve, when activated, causes the pump to destroke and go to zero displacement. This valve may be used as a safety device. Typically, the valve is activated by a seat switch detecting operator presence or by a remote emergency stop switch on the operator’s console. It is available in 12 or 24 Vdc and either normally open or normally closed configurations.
Auxiliary Mount Options

Position 25

A-PAD ADAPTER

- **with 9 TOOTH**
 - Model Code: C
 - Torque: 113 N·m
 - 1000 lbf·in

A-PAD ADAPTER

- **with 11 TOOTH**
 - Model Code: E
 - Torque: 170 N·m
 - 1500 lbf·in

B-PAD ADAPTER

- **with 13 TOOTH**
 - Model Code: D
 - Torque: 283 N·m
 - 2500 lbf·in

B-PAD ADAPTER

- **with 15 TOOTH**
 - Model Code: E
 - Torque: 407 N·m
 - 3600 lbf·in

C-PAD ADAPTER

- **with 14 TOOTH**
 - Model Code: F
 - Torque: 701 N·m
 - 6200 lbf·in

C-PAD MOUNT

- **with 27 TOOTH**
 - Model Code: H
 - Torque: 814 N·m
 - 7200 lbf·in
Operational Diagram

Typical Series 2 Variable Displacement Pump/Fixed Displacement Motor Schematic

Note: For Ease of Viewing, The Servo Control Cylinder, Swashplate, and Control Valve are Shown Removed From the Pump.
Component Descriptions

The operational diagram on page 29 shows a typical heavy duty hydrostatic transmission. The axial piston pump and axial piston motor are the main components. The filter, reservoir, heat exchanger, and oil lines make up the rest of the system. The function of each of these components is described below:

A separate energy source, such as an electric motor or internal combustion engine, turns the input shaft of the pump.

Variable Displacement Axial Piston Pump

The variable displacement pump provides a flow of high pressure oil. Pump output flow can be varied to obtain the desired motor output speed. For example, when the pump’s displacement is zero, no oil is pumped and the transmission’s motor output shaft is stopped. Conversely, maximum pump displacement produces maximum motor shaft speed. The direction of high pressure flow can also be reversed; doing so reverses the direction the motor output shaft rotates.

A charge pump is integrated into the piston pump and driven by the shaft of the piston pump. The drawing illustrates a suction filtration circuit. Eaton recommends a suction filter without a bypass valve. The charge pump has a Low Pressure Relief Valve that regulates the output pressure.

Eaton’s Series 2 Pump offers High Pressure Relief Valves and Pressure Override Control for system high pressure protection. (see page 28 for a description of these features).

Fixed Displacement Axial Piston Motor

The motor uses the high pressure oil flow from the pump to produce transmission output. The high pressure oil comes to the motor through one of the high pressure lines. It enters the motor, turns the output shaft, then returns to the pump. Eaton piston motors integrate an hot oil shuttle and low pressure relief valve into the end cover. The shuttle valve and low pressure relief valve direct excess charge pump flow into the motor case. The shuttle valve is activated by high pressure and directs excess charge pump flow over the low pressure relief valve. This flushing action allows the charge pump to provide clean, cool oil to the closed loop circuit.

Reservoir

The reservoir is an important part of the hydrostatic transmission system. It should provide adequate oil storage and allow easy oil maintenance. The reservoir must hold enough oil to provide a continuous oil supply to the charge pump inlet. It must also have enough room for the hydraulic oil to expand as the system warms up. Consider charge pump flow when sizing the reservoir: One half (.5) minute times (X) the maximum charge pump flow should be the minimum oil volume in the reservoir. Maintaining this oil volume will give the oil a minimum of thirty (30) seconds in the reservoir. This will allow any entrained air to escape and contamination to settle out of the oil. To allow for oil expansion, the reservoir’s total volume should be at least six tenths (.6) minute times (X) the maximum charge pump flow.

The reservoir’s internal structure should cut down turbulence and prevent oil aeration.

The line returning flow to the reservoir should be fitted with a diffuser to slow the incoming oil to 1 to 1.2 meters [3-4 feet] per second to help reduce turbulence. The return flow line should also be positioned so that returning oil enters the reservoir below the liquid surface. This will help reduce aeration and foaming of the oil.

The reservoir should be baffled between the return line and suction line. Baffles prevent return flow from immediately reentering the pump.

A sixty mesh screen placed across the suction chamber of the reservoir will act as a bubble separator. The screen should be placed at a thirty degree angle to the horizon.

The entrance to the suction line should be located well below the fluid surface so there is no chance of air being sucked into the charge pump inlet. However, the suction line entrance should not be located on the bottom of the reservoir where there may be a buildup of sediment. The suction line entrance should be flared and covered with a screen.

The reservoir should be easily accessible. The fill port should be designed to minimize the possibility of contamination during filling and to help prevent overfilling. There should be a drain plug at the lowest point of the reservoir and it should also have a clean-out and inspection cover so the reservoir can be thoroughly cleaned after prolonged use. A vented reservoir should have a breather cap with a micronic filter.

Sealed reservoirs must be used at altitudes above 2500 feet. These reservoirs should be fitted with a two-way micronic filter pressure cap to allow for fluid expansion and contraction. In both cases the caps must be designed to prevent water from entering the reservoir during bad weather or machine washing.

A hydrostatic transmission with a well designed reservoir will run quieter, stay cleaner and last longer.
Filter
A filter must be used to keep the hydraulic fluid clean. Either a suction filter or a pressure side filter may be used. The filter must be a no-bypass type. A suction filter is shown in the operational diagram on page 29.

System oil particulate levels should not exceed ISO 18/13. Refer to Eaton Hydraulic Fluid Recommendations on page 33.

Recommended beta ratios for each filter type are listed below:
- Suction Filter $\beta_{10} = 1.5$ to 2.0
- Pressure Side Filter $\beta_{10} = 10$ to 20

When a suction filter is used, its flow capacity must be large enough to prevent an excessive pressure drop between the reservoir and charge pump inlet. The pressure at the charge pump inlet port must not be less than 0.8 bar [11.6 PSI] absolute at normal continuous operating temperatures.

High Pressure Lines
The high pressure lines that connect the pump and motor must be able to withstand the pressures generated in the high pressure loop.

Heat Exchanger
Use of a heat exchanger is dependent on the transmission’s duty cycle and on machine layout. The normal continuous operating fluid temperature measured in the pump and motor cases should not exceed 80°C [180°F] for most hydraulic fluids. The maximum fluid temperature should not exceed 105°C [220°F].

The heat exchanger should be sized to dissipate 25% of the maximum input power available to the transmission. It must also be sized to prevent the case pressures in the pump and motor from getting too high. Case pressure up to 2.8 bar [40 PSI], at normal operating temperatures, are acceptable.

Heat Exchanger Bypass Valve
The heat exchanger bypass valve is a pressure and/or temperature valve in parallel with the heat exchanger. Its purpose is to prevent case pressures from getting too high. The heat exchanger bypass valve opens when the oil is thick, especially during cold starts.

Reservoir Return Line
The same general requirements that apply to case drain lines apply to the reservoir return line.
Additional Application Information

Shaft Couplings and Mounting Brackets
Shaft couplings must be able to withstand the torque that will be transmitted to the pump or motor. If the pump or motor is to be directly coupled to the drive, the misalignment should not exceed .050 mm [.002 in.] total indicator run-out for the combination of perpendicularity and concentricity measurements.

The hardness of the couplings connected to Eaton pump or motor shafts should be 35 Rc for tapered or straight keyed shafts and 50-55 Rc for splined shafts.

Pump Valve Plates
Eaton Heavy duty pumps may be fitted with either a V-groove valve plate or a propel valve plate. Propel valve plates should be used in applications where overrunning loads may be present.

Open Loop Circuits
Eaton heavy duty pumps and heavy duty motors may be used in open loop circuits under certain operating conditions. Consult your Eaton representative for details.

Orientation
The mounting orientation of Eaton heavy duty pumps and motors is unrestricted. The case drain line that carries the flow leaving the pump or motor should be connected to the highest drain port on each of the units. This assures that the pump and motor cases remain full.

Multiple Pump or Motor Circuits
Multiple pumps or motors can be combined in the same circuit. When two pumps are used in a parallel circuit, their swashplate controls can be operated in phase or in sequence. The following precautions should be observed whenever multiple pumps and/or motors are connected in the same circuit:

1. Charge pump flow must be greater than the sum of the charge pump flow requirements of the individual units.
2. The possibility of motor overspeeding increases in multiple motor circuits. The parallel motor circuit will act as a frictionless differential. Should one of the motors stall the other could overspeed. The motors used in parallel circuits should, therefore, be sized to prevent overspeeding. Valves that will limit the flow to each of the motors may be used to prevent overspeeding. This will allow the use of smaller motors, however the flow limiting valves will create heat.

3. When using one pump with multiple motors, the case drain lines should be connected in series. The case flow should be routed from the most distant motor, through the remaining motors, to the pump, and finally back to the reservoir. The most distant motor should have the valve block or integral shuttle valve while the additional motors do not need a valve block or integral shuttle valve. A remote valve block is also available for multiple motor circuits. A series-parallel drain line circuit may be needed for the high case flow created in multiple pump circuits. In either case, each pump and motor should be checked for proper cooling when testing the prototype circuit.

4. Series circuits present a unique problem for axial piston motors. Pressure applied to the input port and discharge port are additive as regards to the load and life of the drive shaft and the drive shaft bearings. Please consult with your Eaton representative regarding series circuits.
Hydraulic Fluid Recommendations

Introduction
The ability of Eaton hydrostatic components to provide the desired performance and life expectancy depends largely on the fluid used. The purpose of this document is to provide readers with the knowledge required to select the appropriate fluids for use in systems that employ Eaton hydrostatic components.

One of the most important characteristics to consider when choosing a fluid to be used in a hydraulic system is viscosity. Viscosity choice is always a compromise; the fluid must be thin enough to flow easily but thick enough to seal and maintain a lubricating film between bearing and sealing surfaces. Viscosity requirements for Eaton’s Heavy Duty Hydrostatic product line are specified later in this document.

Viscosity and Temperature
Fluid temperature affects viscosity. In general, as the fluid warms it gets thinner and its viscosity decreases. The opposite is true when fluid cools. When choosing a fluid, it is important to consider the start-up and operating temperatures of the hydrostatic system. Generally, the fluid is thick when the hydraulic system is started. With movement, the fluid warms to a point where the cooling system begins to operate. From then on, the fluid is maintained at the temperature for which the hydrostatic system was designed. In actual applications this sequence varies; hydrostatic systems are used in many environments from very cold to very hot. Cooling systems also vary from very elaborate to very simple, so ambient temperature may affect operating temperature. Equipment manufacturers who use Eaton hydrostatic components in their products should anticipate temperature in their designs and make the appropriate fluid recommendations to their customers.

In general, an ISO viscosity grade 68 fluid is recommended for operation in cold to moderate climates. An ISO viscosity grade 100 fluid is recommended for operation in moderate to hot climates.

Cleanliness
Cleanliness of the fluid in a hydrostatic system is extremely important. Eaton recommends that the fluid used in its hydrostatic components be maintained at ISO Cleanliness Code 18/13 per SAE J1165. This code allows a maximum of 2500 particles per milliliter greater than 5 µm and a maximum of 80 particles per milliliter greater than 15 µm. When components with different cleanliness requirements are used in the same system, the cleanest standard should be applied. OEM’s and distributors who use Eaton hydrostatic components in their products should provide for these requirements in their designs. A reputable filter supplier can supply filter information.

Fluid Maintenance
Maintaining correct fluid viscosity and cleanliness level is essential for all hydrostatic systems. Since Eaton hydrostatic components are used in a wide variety of applications it is impossible for Eaton to publish a fluid maintenance schedule that would cover every situation. Field testing and monitoring are the only ways to get accurate measurements of system cleanliness. OEM’s and distributors who use Eaton hydrostatic components should test and establish fluid maintenance schedules for their products. These maintenance schedules should be designed to meet the viscosity and cleanliness requirements laid out in this document.

Fluid Selection
Premium grade petroleum based hydraulic fluids will provide the best performance in Eaton hydrostatic components. These fluids typically contain additives that are beneficial to hydrostatic systems. Eaton recommends fluids that contain anti-wear agents, rust inhibitors, anti-foaming agents, and oxidation inhibitors. Premium grade petroleum based hydraulic fluids carry an ISO VG rating.
Viscosity and Cleanliness Guidelines

<table>
<thead>
<tr>
<th>Product Line</th>
<th>Minimum</th>
<th>Optimum Range</th>
<th>Maximum</th>
<th>ISO Cleanliness Requirements</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Duty Piston</td>
<td>10cSt</td>
<td>16 - 39 cSt</td>
<td>2158 cSt</td>
<td>18/13</td>
<td></td>
</tr>
<tr>
<td>Pumps and Motors</td>
<td>[60 SUS]</td>
<td>[80 - 180 SUS]</td>
<td>[10,000 SUS]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Notes:

- Fluids too thick to flow in cold weather start-ups will cause pump cavitation and possible damage. Motor cavitation is not a problem during cold start-ups. Thick oil can cause high case pressures which in turn cause shaft seal problems.
- If the natural color of the fluid has become black it is possible that an overheating problem exists.
- If the fluid becomes milky, water contamination may be a problem.
- Take fluid level reading when the system is cold.
- Contact your Eaton representative if you have specific questions about the fluid requirements of Eaton hydrostatic components.

Biodegradable Oil (Vegetable) Guidelines

<table>
<thead>
<tr>
<th>Product Line</th>
<th>Rating With Biodegradable Oil</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Duty Piston</td>
<td>80% of normal pressure rating listed for mineral oils.</td>
<td>82° C (180° F) max fluid temp (unit)</td>
</tr>
<tr>
<td>Pumps and Motors</td>
<td></td>
<td>71° C (160° F) max fluid temp (reservoir)</td>
</tr>
</tbody>
</table>

Additional Notes:

- Viscosity and ISO cleanliness requirements must be maintained as outlined on previous page.
- Based on limited product testing to date, no reduction in unit life is expected when operating at the pressure ratings indicated above.
- Vegetable oil is miscible with mineral oil. However, only the vegetable oil content is biodegradable. Systems being converted from mineral oil to vegetable oil should be repeatedly flushed with vegetable oil to ensure 100% biodegradability.
- Specific vegetable oil products may provide normal unit life when operating at pressure ratings higher than those indicated above.
- Vegetable oils oxidize more quickly than petroleum based hydraulic fluid. Care must be taken to maintain fluid temperature within specified limits and to establish more frequent fluid change intervals.
Eaton Corporation is a global manufacturer of highly engineered products that serve industrial, vehicle, construction, commercial, aerospace and semiconductor markets. Principal products include hydraulic products and fluid connectors, electrical power distribution and control equipment, truck drivetrain systems, engine components, ion implanters and a wide variety of controls. Headquartered in Cleveland, Ohio, the company has 63,000 employees and 195 manufacturing sites in 23 countries around the world. Eaton's sales for 1999 were $8.4 billion.